SAHARA: A Simplified AtmospHeric Correction AlgoRithm for Chinese gAofen Data: 1. Aerosol Algorithm

نویسندگان

  • Lu She
  • Linlu Mei
  • Yong Xue
  • Yahui Che
  • Jie Guang
چکیده

The recently launched Chinese GaoFen-4 (GF4) satellite provides valuable information to obtain geophysical parameters describing conditions in the atmosphere and at the Earth’s surface. The surface reflectance is an important parameter for the estimation of other remote sensing parameters linked to the eco-environment, atmosphere environment and energy balance. One of the key issues to achieve atmospheric corrected surface reflectance is to precisely retrieve the aerosol optical properties, especially Aerosol Optical Depth (AOD). The retrieval of AOD and corresponding atmospheric correction procedure normally use the full radiative transfer calculation or Look-Up-Table (LUT) methods, which is very time-consuming. In this paper, a Simplified AtmospHeric correction AlgoRithm for gAofen data (SAHARA) is presented for the retrieval of AOD and corresponding atmospheric correction procedure. This paper is the first part of the algorithm, which describes the aerosol retrieval algorithm. In order to achieve high-accuracy analytical form for both LUT and surface parameterization, the MODIS Dark-Target (DT) aerosol types and Deep Blue (DB) similar surface parameterization have been proposed for GF4 data. Limited Gaofen observations (i.e., all that were available) have been tested and validated. The retrieval results agree quite well with MODIS Collection 6.0 aerosol product, with a correlation coefficient of R2 = 0.72. The comparison between GF4 derived AOD and Aerosol Robotic Network (AERONET) observations has a correlation coefficient of R2 = 0.86. The algorithm, after comprehensive validation, can be used as an operational running algorithm for creating aerosol product from the Chinese GF4 satellite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Resolution Aerosol Optical Depth Retrieval Using Gaofen-1 WFV Camera Data

Aerosol Optical Depth (AOD) is crucial for urban air quality assessment. However, the frequently used moderate-resolution imaging spectroradiometer (MODIS) AOD product at 10 km resolution is too coarse to be applied in a regional-scale study. Gaofen-1 (GF-1) wide-field-of-view (WFV) camera data, with high spatial and temporal resolution, has great potential in estimation of AOD. Due to the lack...

متن کامل

Cast Shadow Detection to Quantify the Aerosol Optical Thickness for Atmospheric Correction of High Spatial Resolution Optical Imagery

The atmospheric correction of optical remote sensing data requires the determination of aerosol and gas optical properties. A method is presented which allows the detection of the aerosol scattering effects from optical remote sensing data at spatial sampling intervals below 5 m in cloud-free situations from cast shadow pixels. The derived aerosol optical thickness distribution is used for impr...

متن کامل

Assessment of Approximations in Aerosol Optical Properties and Vertical Distribution into FLEX Atmospherically-Corrected Surface Reflectance and Retrieved Sun-Induced Fluorescence

Physically-based atmospheric correction of optical Earth Observation satellite data is used to accurately derive surface biogeophysical parameters free from the atmospheric influence. While water vapor or surface pressure can be univocally characterized, the compensation of aerosol radiometric effects relies on assumptions and parametric approximations of their properties. To determine the vali...

متن کامل

Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm.

The second generation of ocean-color-analyzing instruments requires more accurate atmospheric correction than does the Coastal Zone Color Scanner (CZCS), if one is to utilize fully their increased radiometric sensitivity. Unlike the CZCS, the new instruments possess bands in the near infrared (NIR) that are solely for aiding atmospheric correction. We show, using aerosol models, that certain as...

متن کامل

Algorithm Development for Land Surface Temperature Retrieval: Application to Chinese Gaofen-5 Data

Land surface temperature (LST) is a key variable in the study of the energy exchange between the land surface and the atmosphere. Among the different methods proposed to estimate LST, the quadratic split-window (SW) method has achieved considerable popularity. This method works well when the emissivities are high in both channels. Unfortunately, it performs poorly for low land surface emissivit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017